Tamás Bódai

Young Scientist Fellow of IBS & Research Professor of PNU

Email: bodai@pusan.ac.kr

Phone: +82 (0) 51-510-7631

Research interests

  • Forced response of the climate system, with particular view towards teleconnections, extremes, nonlinearities and tipping
  • Snapshot/pullback attractors, response theory, fluctuation-dissipation relations, climate sensitivity, application to geoengineering assessment
  • Statistics and predictability of extremes in deterministic and stochastic systems
  • Critical transitions, transient chaos, nonergodicity of the climate system


2009 PhD in Engineering, School of Engineering, University of Aberdeem
2004 MEng, Faculty of Mechanical Engineering, Budapest University of Technology

Work Experience

2017 2019 Postdoc, Mathematics and Statistics, University of Reading
2013 2016 Postdoc, Theoretical Meteorology, University of Hamburg
2011 2013 Visiting Scientist, Max Planck Institute for the Physics of Complex Systems, Dresden
2010 2011 Postdoc, Theoretical Physics, Eötvös University, Budapest
2008 2010 Analyst Engineer, Green Ocean Energy, Aberdeen

Fellowships, Awards, and Honors

2019-present Young Scientist Fellowship of the IBS
2011-2013 Visiting Scientist, Max Planck Institute for the Physics of Complex Systems
2004 ERASMUS Studentship, Department of Engineering Mathematics, University of Bristol
2003/2004 Studentship (Köztársasági ösztöndíj) awarded by the Hungarian Ministry of Education and Culture for achievements in education and research. (A 0.8% of the undergraduate student population in Hungary may be awarded in each academic year for a period of 10 months.)


Journal articles

  1. Tamás Bódai, June-Yi Lee, Aneesh Sundaresan.(2022) Sources of Nonergodicity for Teleconnections as Cross-Correlations, Geophysical Research Letters, 49, 8, e2021GL096587, doi: 10.1029/2021GL096587
  2. Sahil Sharma, Kyung-Ja Ha, Wenju Cai, Eui-Seok Chung, Tamás Bódai. (2022) Local meridional circulation changes contribute to a projected slowdown of the Indian Ocean Walker circulation, npj climate and atmospheric science, 5, article number 15, doi: 10.1038/s41612-022-00242-w
  3. Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamas Bodai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-Francois Lamarque, Danica L. Lombardozzi, William R. Wider, and Stephen G. Yeager. (2021) Ubiquity of human-induced changes in climate variability, Earth System Dynamics, vol.12, 4, pp. 1393-1411, doi: 10.5194/esd-12-1393-2021
  4. Tamás Bódai, Gabor Drotos, Kyung-Ja Ha, June-Yi Lee, Timea Haszpra, Eui-Seok Chung. (2021) Nonlinear Forced Change and Nonergodicity: The Case of ENSO-Indian Monsoon and Global Precipitation Teleconnections, Frontier Earth Science, vol.8, article number 599785, doi: 10.3389/feart.2020.599785
  5. Euiseok Chung, Kyung-Ja Ha, Axel Timmermann, Malte F. Stuecker, Tamás Bódai, and Sangki Lee. (2021) Cold-Season Arctic Amplification Driven by Arctic Ocean-Mediated Seasonal Energy Transfer, Earth’s Future, vol. 9, 2, e2020EF001898, doi: 10.1029/2020EF001898
  6. Tamás Bódai, Valerio Lucarini. (2020) Rough basin boundaries in high dimension: Can we classify them experimentally?, Chaos, 30, 103105, https://doi.org/10.1063/5.0002577 
  7. Lucarini V., Bódai, T. (2020) Global stability properties of the climate: Melancholia states, invariant measures, and phase transitions, Nonlinearity, 33(9), R59-R92, https://doi.org/10.1088/1361-6544/ab86cc
  8. Bódai, T. (2020) An Efficient Algorithm to Estimate the Potential Barrier Height from Noise-Induced Escape Time Data, Journal of Statistical Physics, 179, 1625-1636, http://doi.org/10.1007/s10955-020-02574-4
  9. Haszpra, T., Herein, M., and Bódai, T. (2020) Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective, Earth Syst. Dynam., 11, 267–280, https://doi.org/10.5194/esd-11-267-2020
  10. Tamás Bódai, Valerio Lucarini, and Frank Lunkeit (2020) Can we use linear response theory to assess geoengineering strategies?, Chaos,  30(2), 023124. https://doi.org/10.1063/1.5122255
  11. Bódai, T., G. Drótos, M. Herein, F. Lunkeit, and V. Lucarini (2020) The Forced Response of the El Niño–Southern Oscillation–Indian Monsoon Teleconnection in Ensembles of Earth System Models. J. Climate, 33, 2163–2182, https://doi.org/10.1175/JCLI-D-19-0341.1
  12. Tél, T., Bódai, T., Drótos, G., Haszpra, T., Herein, M., Kaszás, B., Vincze, M. (2020) The Theory of Parallel Climate Realizations – A New Framework of Ensemble Methods in a Changing Climate: An Overview, Journal of Statistical Physics, http://doi.org/10.1007/s10955-019-02445-7
  13. Guannan Hu,  Tamás Bódai, and  Valerio Lucarini (2019) Effects of stochastic parametrization on extreme value statistics, Chaos 29, 083102. https://doi.org/10.1063/1.5095756 (promoted as Editor’s Pick, as well as an AIP Scilight,  https://aip.scitation.org/doi/10.1063/1.5122173)
  14. Lucarini, V. and Bódai, T. (2019) Transitions across melancholia states in a climate model: Reconciling the deterministic and stochastic points of view, Physical Review Letters 122, 158701. (selected to be a PRL Editors’ Suggestion, around 1 in 6 letters receive such a highlight, and Featured in Physics, APS’s journal for synthesis pieces), https://doi.org/10.1103/PhysRevLett.122.158701
  15. Bódai, T., Lucarini, V., and Lunkeit, F. (2018) Critical assessment of geoengineering strategies using response theory, Earth System Dynamics Discussions, https://doi.org/10.5194/esd-2018-3021
  16. Bódai, T. and Franzke, C. (2017) Predictability of fat-tailed extremes, Physical Review E 96, 032120. (12 pages), https://doi.org/10.1103/PhysRevE.96.032120
  17. Gálfi, V. M., Bódai, T., and Lucarini, V. (2017) Convergence of extreme value statistics in a two-layer quasi-geostrophic atmospheric model, Complexity vol. 2017, Article ID 5340858. (20 pages), https://doi.org/10.1155/2017/5340858
  18. Drótos, G., Bódai, T., and Tél, T. (2017) On the importance of the convergence to climate attractors, Eur. Phys. J. Special Topics 226, 2031–2038 (invited article in a special issue dedicated to Prof Ulrike Feudel on the occasion of her 60th birthday), https://doi.org/10.1140/epjst/e2017-70045-7
  19. Lucarini, V. and Bódai, T. (2017) Edge states in the climate system: Exploring global instabilities and critical transitions, Nonlinearity 30(7), R32-R66 (invited article by Bruno Eckhardt; open access; most downloaded article of all those published in Nonlinearity in 2017; selected for the journal’s 2017 Highlights Collection)
  20. Drótos, G., Bódai, T., and Tél, T. (2016) Quantifying nonergodicity in nonautonomous dissipative dynamical systems: An application to climate change, Physical Review E 94, 022214. (16 pages), https://doi.org/10.1103/PhysRevE.94.022214
  21. Bódai, T. (2015) Predictability of threshold exceedances in dynamical systems, Physica D 313, 37-50, https://doi.org/10.1016/j.physd.2015.08.007
  22. Bódai, T. and Narakorn Srinil (2015) Performance analysis and optimization of a box-hull wave energy converter concept, Renewable Energy 81, 551-565, https://doi.org/10.1016/j.renene.2015.03.040
  23. Drótos, G., Bódai, T., and Tél, T. (2015) Probabilistic concepts in a changing climate: A snapshot attractor picture, Journal of Climate 28, 3275-3288, https://doi.org/10.1175/JCLI-D-14-00459.1
  24. Bódai, T., Lucarini, V., Lunkeit, F., and Boschi, R. (2014) Global instability in the Ghil-Sellers model, Climate Dynamics 44(11-12), 3361-3381, https://doi.org/10.1007/s00382-014-2206-5
  25. Bódai, T., Altmann, E. G., and Endler, A. (2013) Stochastic perturbations in open chaotic systems: random versus noisy maps. Phys. Rev. E 87, 042902. (12 pages), https://doi.org/10.1103/PhysRevE.87.042902
  26. Bódai, T., Károlyi, Gy., and Tél, T. (2013) Driving a conceptual model climate by different processes: Snapshot attractors and extreme events. Phys. Rev. E 87, 022822. (10 pages), http://doi.org/10.1103/PhysRevE.87.022822
  27. Bódai, T. and Tél, T. (2011) Annual variability in a conceptual climate model: Snapshot attractors, hysteresis in extreme events, and climate sensitivity. Chaos 22, 023110. (11 pages) (article featured as a published multimedia highlight in the journal’s news letter), https://doi.org/10.1063/1.3697984
  28. Bódai, T., Károlyi, Gy., and Tél, T. (2011) A chaotically driven model climate: Extreme events and snapshot attractors. Nonlinear Processes in Geophysics 18, 573–580. (open access), https://doi.org/10.5194/npg-18-573-2011
  29. Bódai, T., Károlyi, Gy., and Tél, T. (2011) Fractal snapshot components in chaos induced by strong noise. Physical Review E 83, 046201. (9 pages), https://doi.org/10.1103/PhysRevE.83.046201
  30. Bódai, T. and Wiercigroch, M. (2011) Acoustic ray stability for long range sound speed profile transition scenarios. International Journal of Bifurcation and Chaos 21(1), 177-194, https://doi.org/10.1142/S0218127411028350
  31. Bibó, A., Károlyi, Gy., and Bódai, T. (2009) Fly-wheel model exhibits the hither and thither motion of a bouncing ball. International Journal of Non-Linear Mechanics 44(8), 905-912, https://doi.org/10.1016/j.ijnonlinmec.2009.06.006
  32. Bódai, T., Fenwick, A. J., and Wiercigroch, M. (2009) New graphical techniques for studying acoustic ray stability. Journal of Sound and Vibration 324(3-5), 850-860, https://doi.org/10.1016/j.jsv.2009.01.049
  33. Bódai, T., Fenwick, A. J., and Wiercigroch, M. (2009) Ray stability for background sound speed profiles with transition. International Journal of Bifurcation and Chaos 19(9), 2953-2964, http://doi.org/10.1142/S0218127409024578
  34. Bódai, T., Fenwick, A. J., and Wiercigroch, M. (2008) Ray chaos in underwater acoustics and its application. International Journal of Bifurcation and Chaos 18(5), 1579-1587. (figure in colour selected for the front page graphics of the printed journal), https://doi.org/10.1142/S0218127408021191


Book chapter

  1. June-Yi Lee, Tamás Bódai. (2021) Indian summer Monsoon Variability 1st Edition, El Niño-teleconnections and beyond: Chapter 20, Future Changes of the ENSO-Indian Summer Monsoon Teleconnection, Elsevier, pp. 393-412.
  2. Bódai, T. (2017) Extreme value analysis in dynamical systems: Two case studies. In: Nonlinear and Stochastic Climate Dynamics, Cambridge University Press, pp. 392—429.